AFD/AFDD 模组接口软件手册 V3.20

杭州凌石信息技术有限公司

版本: V3.20 日期: 2024.09.17 地址: 杭州市西湖区西园八路浙大森林 E2 幢

历史	版本
----	----

版本号	修改内容	修订人	日期
V3.1	修改表述错误	ZHUHONGWEI	2019.10.14
V3.2	修改表述错误	LEIYU	2019.11.14
V3.3	合并各份软件文档	ZHUHONGWEI	2020.03.02
V3.4	修改表述错误	LEIYU	2020.03.30
V3.5	整理审查	ZHUHONGWEI	2020.04.25
V3.6	简化版	ZHUHONGWEI	2020.09.07
V3.7	修订 CRC,校准操作 错误,增加校准相 关命令	ZHUHONGWEI	2021.02.28
V3.8	修改 0x14 命令定义	ZHUHONGWEI	2021.06.06
V3.11	添加串口传输直流 电流命令	LIYANGHUAN	2022.03.10
V3.12	修订模型下载命令 说明	ZHUHONGWEI	2022.04.08.
V.3.13	修订扩展校准电流 命令	ZHUHONGWEI	2022.05.25.
V.3.14		ZHUHONGWEI	2022.06.02.
V.15	增加 485 地址配置	Ň.	2023.05.18
V3.16	增加三相联合状态 查询命令	ZHUHONGWEI	2023.10.10
V3.17	增加通信底板相关 协议	WQ	2024.01.17
V3.18	增加 2、4 通道直流 电弧、自检查询命 令	WQ	2024.01.23
V3.19	增加 2C 命令相关说 明取消 2D 命令	WQ	2024.01.23
V3.20	增加 IAP 相关说明	WQ	2024.09.17

术语与缩略语

缩略语	英文全称	中文全称

声明

杭州凌石信息技术有限公司 保留所有权利

本文档的产权属于杭州凌石信息技术有限公司(下称杭州凌石)。本文档仅可提供给杭州 凌石员工或与杭州凌石有合法合作关系,并需要本文档相关内容的人员。任何公司或个人不 得在未经杭州凌石授权的情况下,复制、传播、转录、储存、翻译此文档。禁止在任何专利、 版权或商业秘密过程中,授予或暗示使用此文档。

商标申明

杭州凌石信息技术有限公司的 LOGO 和其它所有商标归杭州凌石信息技术有限公司所 有,所有其它产品或服务名称归其所有者拥有。

注意

您购买的产品、服务或特性等应受杭州凌石商业合同和条款的约束,本文档中描述的全 部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,杭州凌 石对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档 仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

杭州凌石信息技术有限公司

441 to L .	杭州市西湖区西园八路浙大森林 E2 幢
꼬나.	邮编: 310012
[77]坦.	http://www.linsinfo.com/

- 1	=
	्रस

5史版本1	历史	
术语与缩略语		
3明3	声明	
, 一、 介绍	<u> </u>	
工、模组命令协议	二,	
E、命令功能分组	三、	
]、 串口命令详细描述14	四、	
ī、 光伏系统传输直流数据命令31	五、	
六、错误命令处理	六、	

一、介绍

AFD/AFDD 模组除硬件电平接口信号外,也可通过串行接口通信,获得内部状态或管理模组。模组串口可以连接 AFD/AFDD 探测器产品主控 MCU,也可与公司提供的 PC 管理软件通信。其中,模组通过引出的 UART 接口与主控 MCU 通信; PC 控制台管理软件 AFDMonitor 运行于 Windows 环境,可通过 RS232 与测试板通信。串口通信格式为:数据位 8 位,无奇偶校验,停止位 1 位。其它设置如下:

AFDMonitor 运行配置文件: config.txt 样例:

3	/****参数 1:	串口端口号,根据连接口设置****/
115200	/****参数 2:	波特率,固定****/
\AFCI\AFDMonitor\Data	/****参数 3:	现场数据保存路径,可修改****/
100	/****参数 4:	现场数据文件组编号,可修改****/
AC0003.Bin	/****参数 5:	更新模型文件名****/
64	/****参数 6:	更新模型文件名长度 K 块数****/

现场文件编号用于设定现场数据存放时的起始编号。

一般要求,更新模型文件放在 AFDMonitor.exe, Config.TXT 相同文件目录下。不同模型文件长度可能不同,待更新时会有本公司给出具体该版本软件下的值,每次更新的模型文件也由本公司提供,或者以网络方式支持更新。

更新模型文件名对应着模型类型编码与版本号。其中:模型类型编码为2字节字符 编码,代表某种模型类型与架构,相同的模型类型具有相同的神经网络架构,以及相同 的模型数据尺寸。模型版本号为4位数字,从0000~9999,数字越大,表示模型越新。 在模型下载时,新的模型类型版本可以覆盖更新旧的模型版本,反之拒绝。

二、模组命令协议

通信都是由 MCU 或 PC 端控制台管理软件发起请求, AFD/AFDD 模组回应。

请求命令格式: 0x55 0x5A+长度(2Byte)+命令号(1Byte)+命令参数(...)+CRC 校验(2Byte)

0x55 0x5A: 2 字节命令头;

命令长度为 2 字节数,从命令号开始计算,不包括 CRC 校验码;其中,第 1 字节为高位,第 2 字 节为低位,例如:长度 0x01 0x23 表示 1*256+2*16+3=291

命令号为1字节数;

CRC 校验码计算的是整个命令的内容,包括命令头以及长度。

命令回应格式: 0x55 0x5A+长度(2Byte)+命令号(1Byte)+命令参数(...)+CRC 校验(2Byte) 与请求命令对应。上述命令及回应原则上长度不超过 256 字节,但长度预留 2 字节。 CRC 校验码符合 CRC-16/MODBUS 标准,计算公式: X16+X15+X2+1,按大端模式输入/输出,即低 字节在前,高字节在后。

本公司提供的 PC 控制台管理软件 AFDMonitor.exe 封装了命令序列,可通过简化的命令号请求, 具体命令格式请参照本文档串口命令详细描述部分。

以下文档中,XX、nn、mm、N1、N2等都代表 1Byte 数值。

三、命令功能分组

串口命令集用于模组测试评估、生产、现场处理、更新换代等不同的功能目的,在此将模组串口命令集按功能分组,以利于查询。注意:各分类表中命令子集是重叠的。命令码以 16 进制表达。

3.1 命令全集列表

命令码	功能简述
0x01	查询产品信息
0x02	下载现场保存波形数据
0x03	清除现场保存波形数据
0x04	启动环境自适应学习功能
0x05	停止环境自适应学习功能
0x06	读取现场自学习参数结果
0x07	清除自学习参数,恢复出厂值
0x0A	查询自学习状态
0x0B	恢复运行参数出厂设置
0x0C	重新校准
0x0D	测试电弧报警、断路功能
0x0E	测试漏电报警、短路功能
0x0F	设置报警静音
0x10	查询报警状态
0x11	读取传感器参数
0x12	更新传感器参数
0x13	读取有效电流值
0x14	吸收现场误动作数据
0x16	更新产品信息
0x17	设置故障电弧判定确认次数
0x18	查询故障电弧判定确认次数
0x19	设置报警、断路响应最小负载电流
0x1A	读取报警、断路响应最小负载电流
0x1B	下载更新数学模型数据块
0x1C	使能更新的数学模型
0x1D	恢复出厂数学模型
0x1E	读取模型更新标记
0x1F	查询模组运行/维护状态
0x20	设置模块校准电流
0x21	读取模块校准电流
0x22	暂停电弧探测功能
0x23	设置/取消家电专用版试运行状态
0x24	查询家电专用版试运行状态

AFD_AFDD 模组接口软件手册 V3.20

0x25	启动模组自检
0x26	查询上次自检结果
0x27	启动串口 IAP 软件升级
0x28	切换到系统预设不同灵敏度版本
0x29	查询模组当前的灵敏度级别
0x2A	配置模组 485 地址
0x2B	读取模组客户产品型号编码
0x2C	读写配置信息
0x2D	
0x2E	读取三相电流电弧状态联合信息
0x2F	下载 IAP 软件数据块
OxFE*(1)	模组复位
0xFF	模组复位并退出控制台程序

附注: 0xFE*(1)命令仅用于 PC 控制台管理软件, MCU 控制模组复位统一采用 0xFF 命令。

上表中绿色部分为常用指令(交直流通用)黄色为产测或调试可能需要用到的指令,蓝色为交流专 用指令,黑色为内部使用命令。

3.2 评估命令集合列表

命令码	功能简述
0x01	查询产品信息
0x04	启动环境自适应学习功能
0x05	停止环境自适应学习功能
0x06	读取现场自学习参数结果
0x07	清除自学习参数,恢复出厂值
0x0A	查询自学习状态
0x0B	恢复运行参数出厂设置
0x0C	重新校准
0x0D	测试电弧报警、断路功能
0x10	查询报警状态
0x13	读取有效电流值
0x17	设置故障电弧判定确认次数
0x18	查询故障电弧判定确认次数
0x19	设置报警、断路响应最小负载电流
0x1A	读取报警、断路响应最小负载电流
0x1B	下载更新数学模型数据块
0x1C	使能更新的数学模型
0X1D	恢复出厂数学模型
0x1E	读取模型更新标记
0x1F	查询模组运行/维护状态
0x20	设置模块校准电流
0x21	读取模块校准电流
0x22	暂停电弧探测功能
0x23	设置/取消家电专用版试运行状态
0x24	查询家电专用版试运行状态
0x25	启动模组自检
0x26	查询上次自检结果
0x27	启动串口 IAP 软件升级
0x28	切换到系统预设不同灵敏度版本
0x29	查询模组当前的灵敏度级别
0x2A	配置模组 485 地址
0x2B	读取模组客户产品型号编码
0x2E	读取三相电流电弧状态联合信息
OxFE*(1)	模组复位
0xFF	模组复位并退出控制台程序

 \wedge

3.3 生产过程命令集合

命令码	功能简述
0x01	查询产品信息
0x04	启动环境自适应学习功能
0x05	停止环境自适应学习功能
0x06	读取现场自学习参数结果
0x07	清除自学习参数,恢复出厂值
0x0A	查询自学习状态
0x0B	恢复运行参数出厂设置
0x0C	重新校准
0x0D	测试电弧报警、断路功能
0x0E	测试漏电报警、短路功能
0x13	读取有效电流值
0x14	吸收现场误动作数据
0x17	设置故障电弧判定确认次数
0x18	查询故障电弧判定确认次数
0x19	设置报警、断路响应最小负载电流
0x1A	读取报警、断路响应最小负载电流
0x1F	查询模组运行/维护状态
0x20	设置模块校准电流
0x21	读取模块校准电流
0x25	启动模组自检
0x26	查询上次自检结果
0x27	启动串口 IAP 软件升级
0x28	切换到系统预设不同灵敏度版本
0xFF	模组复位并退出控制台程序

此命令集可能用于产品生产过程,用于模组版本查询,出厂前参数及设置,产品出厂前校准、 功能测试等。

3.3.1 校准过程指南

本公司出品 AFD/AFDD 模组通过内部测试已验证过电路和软件的正确性,但因为与传感器匹配 原因,需要在整机装配现场进行与传感器的匹配校准。校准过程允许重复,以避免之前因某种原因 导致的错误校准,如在校准时没有按要求连通标准 5A 校准电流,或者没有连接好互感器等。

校准过程运行条件: AFD 报警器/AFDD 断路器装配完成后,首先通 5A 纯阻性电流; 校准启动方法: 校准可以有两种触发方式:

A、通过模组电平接口:适合模组参数空白首次校准或重复校准。上电前按测试键,上电后模组直接进入校准过程,该过程大致持续5秒左右,输出串口命令信息及电平信号。 模组输出串口命令信息:0x550x5A0x000x020x0C0x020x710x12。

同时,依此在模组 LED 引脚、ARC_FAULT 引脚输出高电平,表示校准逐步完成。如果此时模组 插在公司提供的 AFD 测试底座上,黄灯、红灯依此亮起。

- B、通过串口命令:适用于首次或重复校准。模组上电后,通过向模组串口发请求校准命令:0x55 0x5A 0x00 0x01 0x0C 0x3B 0x41。
- C、对于直流场景产品,校准需分独立的两步:零点和传感器倍率。开机前按住测试键,或者上电后发布 0x0C 串口命令,启动校准的第一步:电流零点校准,此时要求负载回路电流为零,等待校准完成时,测试底座的黄灯亮。然后配置负载回路为 5A 电流,按复位键,或者发布串口命令 0x14 启动第二步校准。校准完成时,测试底座红灯亮。
- D、第二步校准串口命令: 0x55 0x5A 0x00 0x01 0x14 0x3B 0x 4B。 模组首先回应: 0x55 0x5A 0x00 0x02 0x0C 0x01 0x31 0x13,表示模组收到串口校准命令,接着模 组重启。

模组进入校准过程,大致持续5秒钟后,模组串口输出信号及报警信号,表示校准完成。输出 命令信息及引脚电平指示同A。

另外,校准过程完成后,模组进入保持状态,客户可通过电平输出引脚及测试底座 LED 指示灯,确认校准过程完成,并不直接进入检测电弧工作状态。此时,通过再次上电,或者给模组硬件 复位引脚引入低电平,模组复位重启,配合互感器及周边电路,即可正常使用。 注意:因为设置了电平启动校准方式,AFD/AFDD 整机产品上电启动时,不能对模组测试按键电 平口输出低电平信号,以免错误进入校准工作流程;也不能给模组硬件复位引脚提供低电平信号, 避免不停地复位。

3.4 工程现场处理命令集合列表

由于我国电气环境复杂多变,故障电弧探测技术作为一项新技术,需要在应用中不断完善。模 组避免误动作有三种途径:初始自适应,调整电弧报警响应速度,调整电弧判断负载阈值电流。通 过向 AFD/AFDD 发送相应串口命令实现。

命令码	功能简述
0x01	查询产品信息
0x02	读取现场保存波形数据
0x03	清除现场保存波形数据
0x04	启动环境自适应学习功能
0x05	停止环境自适应学习功能
0x06	读取现场自学习参数结果
0x07	清除自学习参数,恢复出厂值
0x0A	查询自适应学习状态
0x0B	恢复运行参数出厂设置
0x17	设置故障电弧判定确认次数
0x18	查询故障电弧判定确认次数
0x19	设置报警、断路响应最小负载电流
0x1A	读取报警、断路响应最小负载电流
0x1B	下载待更新数学模型数据块
0x1C	使能更新的数学模型
0x1D	恢复到出厂数学模型
0x1E	读取模型更新标记
0x1F	查询模组运行/维护状态
0x27	启动串口 IAP 软件升级
0x28	切换到系统预设不同灵敏度版本
0xFE*(1)	模组复位
OxFF	模组复位并退出控制台程序

四、串口命令详细描述

0x01. 产品信息查询: 查询 AFD/AFDD 模组总体信息。

MCU 请求命令: 55 5A 00 01 01 CRC

PC 控制台管理软件输入命令: 01

控制台回应: AFD/AFDD Device Message Has Obtained.表示正确得到 AFD/AFDD 产品信息

模组回应: 55 5A 00 nn 01 N1 XX CRC。

N1 为现场报警次数。

回应示例: 55 5A 00 36 01 05 "20220101SMAC00010201001M0301004M066EFF36"

"AF" d0 87 71 cf 4b 40 cf be 72 3a CRC

此处,引号内是 ASCII 表示,其余是 16 进制字符值表示.

命令格式详细解析:

位置 1~2(55 5A): 回应命令头

位置 3~4(00 36): 命令长度

位置 5(01): 命令号

位置 6(05): 现场数据份数,也即是报警次数

位置 7~38("20220101SMAC00010201001M0301004M"): ASCII 码,产品编码,其中:

位置 7~14("20220101"): 产品出厂日期

位置 15~16("SM"): ASCII 码,产品客户编码

位置 17~18("AC"): ASCII 码,产品模型编码

位置 19~22("0001"): 数字,0000~9999,模型版本号

位置 23~30("0201001M"): ASCII 码,硬件版本 8 位编码, 02: 主版本号, 01: 次版本号, 001M: 子版本号

位置 31~38("0201001M"): ASCII 码, 软件版本 8 位编码, 02: 主版本号, 01: 次版本号, 001M: 子版本号

位置 39~46("066EFF36"): ASCII 码,产品 ID 序列编码

位置 47~48("AF"): 产品类型,目前固定是 ASCII 码 AF

位置 49~58(d0 87 71 cf 4b 40 cf be 72 3a): 传感器参数

位置 59~60: CRC 校验码

0x02. 现场数据采集:获取 AFD/AFDD 模组中保存的报警或学习现场数据。

MCU 请求命令(按数据包方式获取): 55 5A 00 04 02 N1 N2 N3 CRC

MCU 请求命令(按数据地址方式获取): 55 5A 00 05 02 F0 N1 N2 N3 CRC

PC 控制台管理软件输入命令(按数据包方式获取): 02

PC 控制台管理软件输入命令(按数据地址方式获取): 02 F0

模组回应: 55 5A 00 nn 02 N1 N2 N3 XX XX ... XX CRC

上述命令分两种格式,分别对应按数据包的序号获取数据和按数据存放地址获取数据,交流通 用版采用按数据包的序号获取数据,交流抗串扰版和直流版支持按数据存放地址获取数据。

按数据包的序号获取数据方式,N1为报警事件序号,N2为报警事件对应的数据包的序号,由于

一个数据包数据过大需要拆分 2 次发送,所以 N3 为数据包上、下半包标记(范围 0~1)。

如果数据按 400ms 存放: N1 范围 0~4、N2 范围 0~39。

如果数据按 2s 存放: N1 为 0、N2 范围 0~199。

按数据地址方式获取数据方式,N1为报警事件序号,N2为KByte序号,表示要获取第N2KByte的数据,N3表示当前KByte内的块序号(128Byte1块,范围0~7)。

交流抗串扰版: N1 范围 0~4、N2 范围 0~11。

直流通用版: N1 为 0、N2 范围 0~249。

直流抗串扰版: N1 为 0、N2 范围 0~53。

控制台回应: (n) Scene data have been obtained. 表示已有(n)个现场数据保存。

另外,对于每份现场数据,命令拆分成若干块数据传输。每块数据传输完成,控制台回应: Acquire One Block Data!

控制台程序将把现场数据保存到由 Config.txt 配置文件所指定的目录中。

MCU 通过读取现场数据,可以上传至云服务器,并在云服务器合并每个场景下区块数据成一个数据文件。数据文件为二进制格式文件,组成格式:文件首部+场景数据。其中文件首部有表达了文件解析格式和模组传感器参数,具体内容来自 01 命令回应中 47~58 位置数据。

由于模组内存储区空间有限,如果超过场景波形超过存储区容量,将覆盖先前的存储区,而存储区保留了最终的若干次波形数据。在读取数据时,读取命令按序号0,1,...编序,返回时则按模组中计数值,最近的若干次电弧波形编序。例如,如果存储区最多可以存储5段波形,当前模组总的电弧识别次数是8次,读取时的波形序号依次是0、1、2、3、4,返回时对应序号依次是3/4/5/6/7。

命令中电弧识别计数值为单字节数据,最大值是 255。模组处理时,如果计数值达到 255, 会自动归零,并清除存储区中的波形数据。一般地,要求客户在该计数值未达到 255 之前,能 主动读取波形数据,并用 03 命令清空存储区。 0x03. 现场数据清除:清除保存在 AFD/AFDD 模组中的现场数据,以留出空间用于以后的数据保存。 AFD/AFDD 模组中大致可保存 10 次报警或学习数据。

MCU 请求命令: 55 5A 00 01 03 CRC

PC 控制台管理软件输入命令: 03

控制台回应: Are you sure to delete data?提问是否确认要清除保存数据。键入"Y"或"y", AFD/AFDD 现场数据被清除,控制台回应: All Scene Data Has Been Clear Away. 模组回应: 55 5A 00 01 03 CRC

0x04. 设置学习小时数: AFD/AFDD 可设置自学习小时数,以用于 AFD/AFDD 模组适应复杂电网环境, 采用自学习的方式调整有关运行参数。

MCU 请求命令: 55 5A 00 03 04 XX XX CRC

PC 控制台管理软件输入命令示例: 04 01 23 控制台回应: Set Learning Hex Hour:0x0123。表明已设定并启动学习过程。注意: 设定的小时数 以 16 进制表达。如: 01 23 实际对应十进制小时数为 0x01*256 + 0x23 = 291。 模组回应: 55 5A 00 03 04 XX XX CRC XX XX 为设定完成的学习小时数。

0x05. 停止学习:停止当前的学习过程,但之前的学习成果保留。停止学习后,可以再次发布学习命令,再次继续学习,如此循环往复。

MCU 请求命令: 55 5A 00 01 05 CRC PC 控制台管理软件输入命令: 05 控制台回应: AFD/AFDD Has Stop Learning. 模组回应: 55 5A 00 01 05 CRC

0x06. 获取学习结果参数。

MCU 请求命令: 55 5A 00 02 06 N1 CRC(N1 为模型通道号)

PC 控制台输入命令: 06

控制台回应: Learning Sensibility Parameter Has Been Obtained. 根据学习结果,会有多个参数返回。返回的参数保存在 GetFieldLoad.Par 文件中,保存路径由 Config.txt 指定。

模组回应: 55 5A nn nn 06 N1 XX XX XX CRC 回应格式中, N1 为模型通道号,回应参数 XX XX XX 为单精度浮点数。 另外,当前总的模型通道数由 PC 控制台软件配置文件指明。GetFieldLoad.Par 格式:二进制文件,保存所有通道的学习结果参数。

模型通道学习参数初始值都为 0, 经历一定学习过程后, 某些通道参数会递增, 表示学习有了效果。

0x07. 清除学习结果:清除之前的学习结果,同时清除影子学习的结果。

MCU 请求命令: 55 5A 00 01 07 CRC

PC 控制台管理软件输入命令: 07

控制台回应: AFD/AFDD Learning Sensibility Parameter Has Been Reset.

模组回应: 55 5A 00 01 07 CRC

0x0A. 查询学习状态。

MCU 请求命令: 55 5A 00 01 0A CRC PC 控制台管理软件输入命令: 0A 控制台回应: Total need to learn:0xXX Hour. Have learned:0xXX Hour. 模组回应: 55 5A 00 06 0A nn(学习状态) mm mm (需要学习小时数) XX XX(已学习小时数) CRC

0x0B.恢复运行参数为出厂设置。

MCU 请求命令: 55 5A 00 01 0B CRC PC 控制台管理软件输入命令: 0B 模组回应: 55 5A 00 01 0B CRC 0x0C. 重新校准: 启动重新校准传感器参数。注意: 启动该命令后,需要 AFD/AFDD 接好 5A 电流。发送命令后,AFD/AFDD 会重启,进入标定过程。

MCU 请求命令格式: 55 5A 00 01 0C CRC

PC 控制台管理软件输入命令: 0C

控制台回应: Are You Sure to Re-Calibration? It Will Remove All Preview Sensor Rate?提问,键入"y" 或"Y"后,控制台提示 AFD/AFDD Has Started Re-Calibration...,然后 AFD/AFDD 重启,并进人校准 过程。

模组回应:校准过程时间持续比较长,模组收到 0C 命令后,会先回应一条命令,表示已经收到 该命令,然后模组自动重启,进入校准过程。校准完成后,模组再回应第二条命令,表示已经 完成校准。校准完成后,AFD/AFDD 模组处于等待状态,需要重启,才进入电弧探测状态。

第一阶段(表示模组收到校准命令,自动启动校准过程): 55 5A 00 02 0C 01 CRC

第二阶段(表示校准完成): 55 5A 00 02 0C 02 CRC

0x0D. 测试电弧报警功能。

MCU 请求命令格式: 55 5A 00 01 0D CRC PC 控制台管理软件输入命令: 0D 模组回应: 55 5A 00 01 0D CRC

0x0E. 测试漏电报警功能。

MCU 请求命令格式: 55 5A 00 01 0E CRC PC 控制台管理软件输入命令: 0E 模组回应: 55 5A 00 01 0E CRC

0x0F. 设置报警静音。

MCU 请求命令格式: 55 5A 00 01 0F CRC

PC 控制台管理软件输入命令: 0F

模组回应: 55 5A 00 01 0F CRC

0x10. 查询报警状态。[见备注]

MCU 请求命令格式:

单通道模组: 55 5A 00 01 10 CRC

多通道模组: 55 5A 00 02 10 F0 CRC

PC 控制台管理软件输入命令: 10

模组回应:

单通道模组: 55 5A 00 02 10 XX CRC

多通道模组: 55 5A 00 06 10 F0 XX XX XX XX CRC

交流返回数据: 非0表示有电弧,0表示没有电弧。

直流返回数据:1表示电弧出于A区,2表示电弧出于B区,0表示没有电弧。

单通道模组:返回1个字节状态 多通道模组:返回4个字节状态(其中双通道后2字节忽略)

0x11. 读取传感器参数

MCU 请求命令格式: 55 5A 00 01 11 CRC PC 控制台管理软件输入命令: 11 模组回应: 55 5A 00 07 11 XX CRC

0x12. 更新传感器参数

0x13. 请求有效电流值:四字节浮点数方式发送有效电流值,大端模式,最小有效值 0.1A。通过模组串口发送,内部每秒钟计算更新一次。[见备注]

MCU 请求命令格式: 55 5A 00 01 13 CRC 模组回应: 55 5A 00 05 13 XX XX XX CRC 控制台回应:显示电流值

0x14. 吸收现场误动作数据,将吸收的结果转移到学习参数表。

MCU 请求命令格式: 55 5A 00 01 14 CRC PC 控制台管理软件输入命令: 14 模组回应: 55 5A 00 01 14 CRC

0x17. 设置电弧确认次数。

该命令含有两种格式,

格式 1:

MCU 请求命令格式: 55 5A 00 02 17 XX CRC

PC 控制台管理软件输入命令: 17 XX

模组回应: 55 5A 00 01 17 CRC

格式 2:

MCU 请求命令格式: 55 5A 00 05 17 XX XX XX XX CRC

PC 控制台管理软件输入命令: 17 XX XX XX XX

模组回应: 55 5A 00 01 17 CRC

在一定的时间窗口期内累计判断为电弧状态的次数达到一定阈值后,模组才认定发生了持续性 故障电弧。根据有关国家标准,该时间窗口期为一秒钟或半秒钟。模组出厂缺省设置是随电流增大、 判断次数减小达到反时限识别的序列。为简化起见,用户设置时只含一种次数。

0x18. 查询电弧确认次数

MCU 请求命令格式: 55 5A 00 01 18 CRC
PC 控制台管理软件输入命令: 18
模组回应: 55 5A 00 06 18 XX XX XX XX CRC
本命令读取的是 0x17 命令设置或出厂缺省配置的值。

0x19. 设置报警响应最小负载电流

MCU 请求命令格式: 55 5A 00 02 19 mn CRC PC 控制台管理软件输入命令: 19 mn CRC 模组回应: 55 5A 00 01 19 CRC

注意:这里的负载电流数值采用一种特殊的简化表达方法,16进制电流命令参数 0xmn 的含义 是 m.nA,比如说,该参数值为 0x35,表达的含义是 3.5A;如果要表示 10.5A,则参数值为 0xA5。下 一条命令回应值也一样。这里有一个特殊性,该表达式个位实际为 BCD 码,即最大值是 9,不能表 达大于 9 的值,例如 0x0A,含义混淆。所以,该表达式可以表达的最大电流是 0xF9,即 15.9A。

对通用版 AFD/AFDD 来说,初始设置的响应最小电流是 2.0A,本命令设置值一般不能小于该值。

0x1A. 读取报警响应最小负载电流

MCU 请求命令格式: 55 5A 00 01 1A CRC PC 控制台管理软件输入命令: 1A 模组回应: 55 5A 00 02 1A mn CRC

0x1B. 下载待更新的数学模型

MCU 请求命令格式: 55 5A 00 nn 1B N1 N2 CRC

PC 控制台管理软件输入命令: 1B

下载时,每传输块模型数据设计为 128 字节,N1 为页号,每页大小为 1KByte,N2 为页内块号, 对应第 N1 *1K + N2 的块,起始页号为 0。

模组回应: 55 5A 00 02 1B 4F CRC 回应'O'表示成功下载。

55 5A 00 02 1B 58 CRC 回应'X'表示失败。

55 5A 00 02 1B 49 CRC 回应'/表示该区块新的模型数据已经被填充,不能再更新,忽略本次操作。

55 5A 00 02 1B 52 CRC 回应'R'表示拒绝,模型类型编码不同,或者模型版本不及模组中版本新。

一般地,模型数据块按块号顺序下载,下载后模组进行 CRC 校验。如果某块没有通过 CRC 校验, 模组回应'X'表示失败,则该块必须重新下载,直到该块成功填充模型空间。

AFD 模组生产方提供更新的模型数据文件,为二进制数据文件,并由 Config.TXT 中指明模型文件 长度 KByte 数。主机方按 128 字节每块数据依次读取该文件,合成 0x1B 下载命令,顺序下载或重传。 直到文件末尾,对于文件尾部不足整 KByte 位置,数据填 0 代表。

模型文件中首个 128 字节块包含模型基本信息,如模型类型编码,模型版本号。只有模型文件中的模型与模组中的类型相同,且版本不比模组中陈旧才可以下载,不然模组回应拒绝('R')。

注意:开始下载新的数学模型前,需要发布 1D 命令将模型数据切换为出厂模型,且清除之前下 载的模型数据,防止下载不成功破坏故障电弧探测。

0x1C. 使能更新的数学模型

MCU 请求命令格式: 55 5A 00 01 1C CRC

PC 控制台管理软件输入命令: 1C

模组回应: 55 5A 00 02 1C 4F CRC,回应'O'表示成功使能,切换到更新的模型。

模组回应: 55 5A 00 02 1C 58 CRC,回应'X'表示未成功使能,仍为出厂模型。

当执行 1B 命令模型数据下载成功后,执行 1C 命令实现模型更新使能,产品信息串中对应模型 部分更新,同时将出厂模型编码与版本号保存起来。此信号可通过 01 命令查询。

0x1D. 还原到出厂数学模型

该命令有2种格式,区别在于对之前下载的更新模型数据的处理。

格式 1:

MCU 请求命令: 55 5A 00 01 1D CRC,简单还原到出厂数学模型,不清除之前下载的模型数据。

PC 控制台管理软件输入命令: 1D

格式 2:

MCU 请求命令: 55 5A 00 02 1D 0C CRC,还原到出厂数学模型,同时清除之前下载的模型数据。

PC 控制台管理软件输入命令: 1D 0C

对于2种命令格式,回应是相同的。

模组回应: 55 5A 00 02 1D 4F CRC,回应'O'表示成功恢复到出厂原数学模型。

模组回应: 55 5A 00 02 1D 5B CRC,回应'X'表示未成功恢复到出厂原数学模型。

执行成功本命令后,产品模型编码和版本号恢复为出厂时信息,可通过01命令查询。

0x1E. 读取模型更新标记

MCU 请求命令: 55 5A 00 01 1E CRC

PC 控制台管理软件输入命令: 1E

命令格式: 55 5A 00 01 1E CRC

模组回应: 55 5A 00 45 1E 01 00 00 00 00 00 00 ... CRC 命令号后的字节值 01 表示当前是出厂模型, 后续的 0 表示所有存储块都未被更新模型填充

模组回应: 55 5A 00 45 1E 00 ff ff ff ff ff ff ff ff concentration of the co

注意:验证模型文件数据是否完整下载时,因为模型文件的第一个块是模型基本信息,首个块 不需要建立下载成功标记。实际模型数据为文件中后续块,所以整体模型数据下载后,标记数据比 模型文件中实际数据少一块。具体的,在上述标记序列中,最后一个标记字节会少一个标志。就是 说,对于NK字节的模型文件,其标记字节数为N,但只含有N-1个标记字节为OxFF,最后一个字 节标记的值为Ox7F。

0x1F. 读取模块当前运行/维护状态

MCU 请求命令: 55 5A 00 01 1F CRC

PC 控制台管理软件输入命令: 1F

模组回应: 55 5A 00 02 1F 00 CRC, 表示模块当前处于命令维护状态,不能正常检测电弧。

模组回应: 55 5A 00 02 1F 01 CRC,表示模块当前处于正常检测电弧状态。

0x20. 设置模块校准电流

MCU 请求命令: 55 5A 00 02 20 mn CRC

PC 控制台管理软件输入命令: 20 mn

模组回应: 55 5A 00 02 20 4F CRC,表示模块设置校准电流成功。

模组回应: 55 5A 00 02 20 58 CRC,表示因为参数配置错误,模块设置校准电流失败。

mn 数值定义同 0x19 命令,即校准电流为 m.nA。新模块如果不修改校准电流,则初始缺省值为 5A。执行本命令后,则后续校准时以命令参数值认作输入信号电流。如果在校准后执行本命令,修 改校准电流值,但不修改以校准的传感器参数值。

校准电流数值采用一种特殊的简化表达方法,16 进制电流命令参数 0xmn 的含义是 m.nA, m 取 值范围是 0~F, 对应 0A~15A。为了避免含义混淆, n 实际为 BCD 码, 取值范围是 0~9, 表示 0.1A~0.9A 数据。

例如,该参数值为 0x35 时,表达的含义是 3.5A;如果要表示 10.5A,则参数值为 0xA5。所以,该表达式可以表达的最大电流是 0xF9,即 15.9A。

为了设置更大范围校准电流,本命令的扩展格式如下:

MCU 请求命令: 55 5A 00 03 20 N1 N2 CRC

PC 控制台管理软件输入命令: 20 N1 N2

模组回应: 55 5A 00 01 20 CRC,表示模块设置校准电流成功。

N1 N2 构成 2 字节 16 进制无符号数, N1 是高位字节, N2 是低位字节, 表示数值 N1 * 256 + N2。 该数值代表电流值的 100 倍。 例如,校准电流为 20.5A,扩大 100 倍,得十进制数 2050,对应 16 进制数值是 802,则 N1=0x08, N2=0x02。

0x21. 读取模块当前校准电流

MCU 请求命令: 55 5A 00 01 21 CRC

PC 控制台管理软件输入命令: 21

模组回应: 55 5A 00 02 21 mn CRC,如果当前校准值小于等于 15.9A,命令按单字节格式回应, mn 表达的模块校准电流值参照 0x20 命令。

模组回应: 55 5A 00 03 21 N1 N2 CRC,如果当前校准电流值大于 15.9A,命令按双字节格式回应。 例如当前校准电流为 32.00A,对应 16 进制数值是 0x0C80,回应格式中 N1=0x0C,N2=0x80。

未校准过的新模块查询当前校准电流值,会显示内存中的随机值,但该值没有意义,此时实际 校准时按 5A 校准。

0x22. 暂停电弧探测功能

MCU 请求命令: 55 5A 00 01 22 CRC

PC 控制台管理软件输入命令: 22

模组回应: 55 5A 00 01 22 CRC。

暂停电弧探测命令后,通过命令 0x1F 可以查询当前运行维护状态。发送复位/退出维护状态命令重启探测。

0x23. 设置/取消家电专用版试运行状态

MCU 请求命令: 55 5A 00 01 23 XX CRC

PC 控制台管理软件输入命令: 23

模组回应: 55 5A 00 01 23 CRC。

该命令有两种格式,分别对应设置/取消试运行状态。其中:

55 5A 00 01 23 01 CRC 设置试运行状态

55 5A 00 01 23 00 CRC 取消试运行状态

本命令是针对家电专用版样机。发布该命令给模组后,模组处于试运行探测误动作状态。在该 状态下,模组探测程序工作,但默认此时没有故障电弧,凡是模型识别出电弧都是错误的,样机通 过收集上传此类数据,用于神经网络模型的重建,减少现场误动作。

0x24. 查询家电专用版试运行状态

MCU 请求命令: 55 5A 00 01 24 CRC

PC 控制台管理软件输入命令: 24

模组回应: 55 5A 00 01 24 XX CRC。

本命令是针对家电专用版样机。发布该命令给模组,查询模组是否处于试运行探测误动作状态。 该命令有两种回应,分别是:

55 5A 00 02 24 01 CRC 当前处于试运行状态

55 5A 00 02 24 00 CRC 当前不处于试运行状态

0x25. 启动模组自检命令。

MCU 请求命令格式: 55 5A 00 01 25 CRC
PC 控制台管理软件举例: 25
模组回应: 55 5A 00 02 25 CRC 收到启动自检命令,并启动自检
模组通过输出 PWM 信号,模拟电弧波形,并经探测口探测到相应信号,表明硬件通路工作正
常,内部设置好状态位,以备查询。

模组收到该命令后,只是启动自检,并不马上返回自检结果。待查询命令时返回自检结果。

0x26. 查询上次自检结果。

MCU 请求命令格式:

单通道模组: 55 5A 00 01 26 CRC

多通道模组: 55 5A 00 02 26 F0 CRC

PC 控制台管理软件举例:26

模组回应:

单通道模组: 55 5A 00 02 26 XX CRC

多通道模组: 55 5A 00 06 26 F0 XX XX XX XX CRC

其中单通道模组返回单字节状态,多通道模组返回4字节状态(双通道后2字节忽略),状态 字节:0表示模组未自检、1表示模组能正常工作、2表示模组自检失败、3表示无此项功能。

0x27. 启动串口 IAP 软件升级。

MCU 请求命令格式: 55 5A 00 02 27 nn CRC

模组回应: 55 5A 00 02 27 nn CRC 表示模组收到命令

下发 nn 为 IAP 控制字, 0X53('S')表示启动,此时数据包接收指针指向首数据包, 0X45('E')表示结束。

模组回应 nn 为控制结构: 0X53('S')表示启动, 0X45('E')表示结束,回应 0X52'R'表示拒绝, IAP 没有下载完成无法关闭。

0x28. 切换到系统预设不同灵敏度版本

MCU 请求命令格式: 55 5A 00 02 28 nn CRC

PC 控制台管理软件举例: 28 nn

模组出厂前,预设不同灵敏度级别的若干组参数,分别标记为0,1,2,…,用户可以根据现场情况选择不同的灵敏度级别。命令参数值0表示模组出厂缺省的灵敏度级别,也是最高的灵敏度级别; 命令参数 nn 值越大,灵敏度越低。不同版本的模组,拥有的不同灵敏度等级。如果用户设置的命令 参数值大于模组内部预设的级别数,则认为设置到最低灵敏度。

如果现场发生模组误动作,用户可选择降低模组灵敏度。

0x29. 查询模组当前的灵敏度级别

MCU 请求命令格式: 55 5A 00 01 29 CRC

PC 控制台管理软件举例: 29

0x2A. 配置模组 485 地址

MCU 请求命令格式: 55 5A 00 02 2A nn CRC PC 控制台管理软件举例: 2A 模组回应: 55 5A 00 02 2A 01 CRC 表示配置成功 55 5A 00 02 2A 00 CRC 表示配置失败

0x2B. 读取模组客户产品型号编码

MCU 请求命令格式: 55 5A 00 01 2B CRC

PC 控制台管理软件举例: 2B

0x2C. 读写配置参数

MCU 请求命令格式: 55 5A 00 05 2C XX XX XX CRC

PC 控制台管理软件举例: 2C

模组回应: 55 5A 00 05 2C XX XX XX XX CRC

配置参数一共4字节分别为:波形保存使能开关(默认关)、CT 自检使能开关(默认开)、产 测使能开关(默认开)、开机默认电流使能开关(默认关),数据为单字节 ASCII 码具体格式为: '0' 关闭、 '1'开启、 'X' 不修改。

模组收到命令后回自动返回最新的配置参数,如果只是读取配置参数则4个数据都发'X'。配置参数改变后建议发 0XFF 命令重启模组。

0x2E. 读取交流三相模组电流及电弧状态联合信息

MCU 请求命令格式: 55 5A 00 01 2E CRC

PC 控制台管理软件举例: 2E

0x2F. 下载待更新的 IAP 数据

MCU 请求命令格式: 55 5A 00 83 2F N1 N2 CRC

PC 控制台管理软件输入命令: 1B

下载时,每传输块模型数据设计为 128 字节,N1 为页号,每页大小为 1KByte,N2 为页内块序号 (0~7),对应第 N1 *1K + N2 的块,起始页号为 0。

模组回应: 55 5A 00 02 2F 4F CRC 回应'O'表示成功下载。

55 5A 00 04 2F 58 N1 N2 CRC 回应'X'表示数据序号错误,当前序号因为 N1 N2。

55 5A 00 02 2F 52 CRC 回应'R'表示拒绝, IAP 类型编码不同。

注意: 在模组启动后 2 秒内发启动 IAP 启动(27 53)指令有效,超时无效,通信包数据结构和 组包方式同模型下载,必须按顺序逐次发生,最后一个包不满 128 字节在数据末尾补 0 按 128 字节 发送。下载过程中如果发生错误且没有断电程序会一直处于 IAP 模式中(此时只有 27 和 2F 指令有 效)。数据包发完后需发 IAP 结束(27 45)指令,如果下载成功模组可正常工作,此时串口指令模 组有回复,不成功需要重启模组(断电方式)再次下载否则模组将无法使用。

0xFE. 复位命令。[见备注]

MCU 请求命令格式: 55 5A 00 01 FF CRC PC 控制台管理软件举例: FE,不退出控制台状态 AFD/AFDD 重启,指令同 0xFF,但不退出控制台状态。

0xFF. 退出维护状态, AFD/AFDD 重启并进入正常工作状态。[见备注]

MCU 请求命令格式: 55 5A 00 01 FF CRC

PC 控制台管理软件举例: FF

控制台回应: Are you sure want to quit the console (y/n)?提示,键入"Y"或"y",退出维护程序,同时 AFD/AFDD 重启。

备注:

- 主控 MCU 或上位机向 AFD 模组发布命令后,模组一般都会很快回应,主控收到回应后可以发 布下一条命令,除了 0x0B、0x0C、0x0D 等,这几条命令由于执行时间较长,AFD 模组会先回应, 表示收到命令,然后执行命令功能。所以,对上述几条命令,发布收到回应后,需要等待半秒 钟,或者收到后续的回应表示执行完成后,方可发布下一条。
- 上述所有命令,分类两类:维护命令和运行命令。 0x02 命令读取现场数据时,因为可能的与 电弧探测写现场数据存在数据一致性竞争,AFD 模组会先停止电弧探测;待读取完数据后,模 组需要复位重新启动电弧探测,或者通过 0x03 命令清除数据,自动切换到工作状态。
- 报警器探测到故障电弧后保持故障电弧报警状态,不再采集数据,电流值停止更新,但模组仍 接收串口命令。

五、光伏系统传输直流数据命令

在直流光伏系统中,客户能够直接获取每一路 PV 的电流值。为了节省空间,降低成本,故障电弧探测模组的 PV 的电流值可以由客户提供,通过向 AFD/AFDD 推送相应串口命令实现。

命令格式: 0x66 0x6A(2Byte)+PV 通道数量 n(1Byte)+PV1 通道电流值和状态值(2Byte)+....PVn 通道 电流值和状态值(2Byte)+CRC 校验(2Byte)+数据结束位(1Byte)

0x66 0x6A: 2 字节命令头;

PV 通道数量 n 为 1 字节数,指示后续传输的 PV 通道数量,其中 Bit7 表示该时间片是否需要判电弧,Bit7=0 表示逆变器正常工作,需要判断电弧;Bit7=1 表示逆变器非稳定工作状态,不需要判断电弧。

	Bit7 Bit6-0
--	-------------

PVn 通道电流值和状态值为 2 字节数,从低到高分别是如下所示

第一字节	第二字节	

第一字节表示 PVn 通道整数部分的电流值。

第二字节表示 PVn 通道小数部分的电流值。(电流值请先进行四舍五入保留小数点后1位)

CRC 校验码符合 CRC-16/MODBUS 标准,计算公式:X16+X15+X2+1,按大端模式输入/输出,即低

字节在前,高字节在后。

数据结束位(1Byte),特殊字符 0x0D,用以指示数据结束。

客户每 10ms 发送一次命令, 推送各个 PV 通道的电流值和工作状态。

命令回应格式:无,客户直接推送,凌石 MCU 没有回应

示例:

MCU 请求命令格式: 66 6A 04 0408 0507 0408 0507 CRC 0D

表示客户传输各路 PV 数据。一共有 4 个通道,工作状态正常,需要进行电弧判断,通道 1、3 的电流是 4.8A,通道 2、4 的电流是 5.7A。

模组回应:无

注:目前协议只支持4通道,小于4通道的也按4通道发,不存在的通道电流发0,且通道序 号需要和物理传感器连接序号一一对应。如果1个传感器内有多条 PV 穿过,发送的电流值为这些 PV 电流的最大值而非总电流。

六、错误命令处理

0x7F:对于收到出错命令,模组回应命令出错,并附加错误类别参数。

目前实现的错误类别是 CRC 校验出错,出错类别号:01

返回命令格式: 55 5A 00 02 7F 01 CRC。

今后,会对多种命令错误进行甄别、添加,返回对应的应答命令。

七、直流通信底板协议

由于一块模组最多只支持同时检测 4 路 AFCI 故障,所以针对 4 路以上的 AFCI 检测需求需要通 过通信底板进行串口扩展,通信底板有 2 种工作模式:透传模式(用于参数设置和数据传输如:自 学习、下载模型、获取报警数据等)和非透传模式(直流电流发送、启动自检和查询 AFCI 状态等), 针对非底板通信协议的数据包都会按透传模式处理,默认透传通道为 1 可通过底板协议切换。其中 直流电流发送协议同模组,其它底板通信协议如下:

0x30. 查询状态/启动自检。

MCU 请求命令格式: 55 5A 00 02 30 nn CRC

模组回应: 55 5A 00 13 30 XX ... CRC

命令控制码 nn: 0--查询、1--启动自检

共返回 12 字节数据针对 12 路电弧检测数据,数据表示的信息如下:

0--正常、1--状态更新中、2--电弧处于 A 区、3--电弧处于 B 区、4--自检失败(或无自检功能)、

5--通道故障(模组或通道不存在)、0xff--当前为透传模式无法查询。

注: 上位机检测到电弧或设备故障时,如要重启设备也发启动自检指令(01)

0x31. 切换透传通道。

MCU 请求命令格式: 55 5A 00 02 31 nn CRC 模组回应: 55 5A 00 02 31 nn CRC 控制信息含义: 0--关闭透传、1~3--切换透传通道 1~3